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Abstract

This paper presents the results of a computational study on the vortex-induced vibration of a circular cylinder. We

have performed a 2-D LES study of the VIV response of a circular cylinder at a Reynolds number of 8000 with a range

of damping ratios and natural frequencies. A combined Dirichlet–Neumann outflow boundary condition was used to

allow the wake vortices to pass through the outflow boundary, undisturbed by the boundary. In spite of the

shortcomings of a 2-D representation, the results show the expected vibratory response of the cylinder for

0:555ofso=fNo1:59; where fso is the nonvibrating vortex-shedding frequency and fN is the natural frequency. For a

solid cylinder with a mass factor (m�) of 7.85 and a material-damping ratio of 0.02, lock-on was observed for

0:793ofso=fNo1:39 with a peak at a reduced velocity of 5.5. Decreasing the value of material damping had the effect of
increasing the extent of the lock-on range. A beating behavior in the oscillation was observed which diminished

considerably as the damping value was increased. A decrease in the mass factor to 1.67 caused the lock-on range to

broaden considerably as a function of reduced velocity. In addition, the amplitude of oscillation increased by a factor of

almost three for the lower value of mass factor. The standard 2S, 2P, etc. vortex structures observed at low Reynolds

numbers for sinusoidal oscillations were not found in this self-excited case. Several reasons are suggested for this

particular lack of agreement with some previous results. These results are seen to represent the VIV behavior of a

cylinder reasonably well for the parameter values used in these calculations.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A circular cylinder, subject to a flowing fluid, has a tendency to vibrate under certain conditions. The vibration can be

transverse to the direction of the flow, in-line with the direction of the flow, or a combination of the two. This vortex-

induced vibration (VIV) occurs when the vortex-shedding frequency and the cylinder natural frequency are properly

matched. Prediction of this self-excited vibration has been a challenge to fluid mechanicians and offshore designers for

many years. The focus in this study will be on the calculation of the VIV problem.

One of the difficulties in considering this problem is that the flow field behind a stationary cylinder is quite different

from that behind an oscillating cylinder. The stationary (or fixed) cylinder has been the subject of numerous studies,

both experimental and computational, for many years. As a result, the fixed-cylinder problem is relatively well

understood regarding the wake behavior and its vorticity dynamics. However, when the vortex-shedding frequency

approaches the cylinder natural frequency, the vortex shedding frequency becomes synonymous with the natural

frequency and the cylinder begins to vibrate in the transverse direction. This is the classical vortex-induced vibration

(VIV) problem. As soon as the vibration begins, the flow field behind the cylinder (the wake flow) becomes more
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complex and the calculation of the flow field becomes more difficult because the cylinder is now moving. The cylinder

motion affects the time-dependent pressure and shear stress distributions; hence, the self-excitation forcing function for

vibratory motion of the cylinder is different from the transverse-direction forcing function for a stationary cylinder. In

vibratory motion, the flow field and the forcing function are both quite time dependent and the cylinder motion is

coupled to the fluid forcing function in a way that requires the flow field and cylinder displacement to be calculated

simultaneously. Parameters influencing this problem are the mass of the cylinder relative to the mass of the displaced

fluid (the mass factor), the Reynolds number of the flow for the cylinder at rest, and the material damping and

structural stiffness values of the oscillating cylinder.

The shedding of vortices, alternately and periodically, from a stationary circular cylinder is not perfectly correlated in

the spanwise direction. In the Reynolds number range of 104oReo105, the correlation length is from three to six

cylinder diameters (see Sarpkaya, 1979). However, when the cylinder begins to oscillate, the vortex structure is

significantly altered. The flow between adjacent axial segments of the cylinder becomes coupled and the correlation

length for vortex shedding increases noticeably. Thus, once oscillation has begun, it is enhanced by the alteration of the

shedding pattern toward a conventional 2-D structure. Bearman (1984) notes that there is a threshold oscillation

magnitude beyond which the correlation length experiences a significant increase. For a circular cylinder, the critical

value of oscillation is y=D ¼ 0:05 which is quite small for VIV oscillations.

The true VIV problem is where the cylinder motion is self-excited by the flow at the location of the cylinder, i.e., there

is feedback between the fluid flow and the cylinder motion. Due to complexities in describing the coupling between

motion and force, there are many studies that provide a representation of a slightly different problem. This companion

problem, known as the forced-vibration problem, is when the cylinder is forcibly oscillated at a specified frequency and

amplitude and the resulting fluid motion and force description are obtained. The numerous forced-oscillation studies

will not be considered in this study.

In this effort, the self-excited vibration problem will be addressed from a computational viewpoint. At the present

time, there have been several different computational approaches toward describing the flow field for this problem.

These include the discrete-vortex method, direct numerical simulation (DNS), Reynolds-averaged Navier–Stokes

(RANS), Large Eddy Simulation (LES), and combinations of the four. Recent studies in the self-excited vibration

(VIV) problem include those by Saltara et al. (1998), who did a combination discrete-vortex/LES study at Re=1000 for

a one degree of freedom (DOF) problem (transverse direction); Zhou et al. (1999), who used the vortex-in-cell (VIC)

method at Re=200 for a two-DOF problem; Evangelinos et al. (2000), who did a 3-D DNS study (1-DOF) at Re=1000

for flexible cylinders; and Guilmineau and Queutey (2001) who did a 2-D finite-volume study (1-DOF) of cylinder

oscillation for Re in the range 900–15 000. Tutar and Holdo (2000) did a 3-D finite-element/LES study on the forced

oscillation of cylinders at Re=2.4� 104.
LES solutions of the problem of a steady flow past a stationary circular cylinder are thought to be the most accurate

of the calculation methods for Reynolds numbers which exceed the present DNS capability. This issue has been

discussed by Majumdar and Rodi (1985), Lu et al. (1997), and Tutar and Holdo (2000). Among the most recent LES

solutions for a steady approach flow are those of Lu et al. (1997), Jordan and Ragab (1998), Breuer (1999), Kravchenko

and Moin (2000) (all for fixed cylinders), and Tutar and Holdo (2000) (for the forced oscillation of a cylinder).

The natural approach to a prediction of VIV in self-excited vibration is a method that couples the fluid motion and

the motion of the cylinder. This coupled approach has been taken by most of the recent investigations into the VIV

problem. Extension to a 3-D structural description is most reasonable when the strip theory approach is used, as

discussed by Dalheim (1999), Herjford et al. (1999), and Yamamoto et al. (2001). This is a solution method wherein a

very long cylinder is divided into segments or ‘‘strips’’ along its length. Each strip is then treated as an individual

cylinder for 2-D or 3-D flow calculations and then the complete cylinder is reconstructed by re-assembling the segments.

There is some obvious inexactness in doing this because of the phase differences that will exist between the segments.

The second author’s previous VIV studies have used the coupled fluids/structure approach in describing the problem

and using LES up to Re=13 000. Zhang and Dalton (1997) and Lu and Dalton (1996) examined the VIV problem for 2-

D viscous flow at Re=200 and 2-D turbulent flow (using LES) at Re=855 and compared the results to those of

Ongoren and Rockwell (1988), Lecointe and Piquet (1989), and Gu et al. (1994). Very good agreement was found with

the Ongoren and Rockwell results and reasonably good agreement with the results of Lecointe and Piquet where the

lack of agreement was in the lift coefficient result. The lift calculations of Lecointe and Piquet, who used no turbulence

modelling, were about 35% higher at Re=855 than those of Zhang and Dalton (1997). In a similar study preceding the

present effort, Zhang and Dalton (1996) undertook a 2-D LES study for a transversely oscillating cylinder at

Re=13 000. An amplitude-to-diameter oscillation of about 0.26, with damping ratio of 0.02, was obtained and lock-on

was observed to occur from fso=fN of about 1.0 to 1.3, where fso is the stationary cylinder vortex-shedding frequency and

fN is the natural frequency. These results showed the same trends as the experimental results of Feng (1968) who

undertook one of the first comprehensive experimental studies of this problem. However, the results of Zhang and
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Dalton (1996) did not provide the kind of agreement necessary for full confidence in the calculation method. Another

study on the VIV problem is that of Tutar and Holdo (2000) who used a 3-D LES finite-element approach to examine

the forced-oscillation case at Re=2.4� 104. Tutar and Holdo found that the 3-D representation was necessary to get

accurate results when the cylinder is vibrating. It is well known that, for a fixed cylinder, a 2-D calculation

produces a drag coefficient that is 5–10% too large for Reynolds numbers up to several thousand. The absence of the 3-

D effects in the wake causes the base pressure to be more negative which leads to an increase in the drag coefficient. A

major cause of the higher drag coefficient is the perfect spanwise correlation of the shed vortices that is inherent in

the 2-D representation. At higher values of Re, the trend of higher 2-D drag coefficients continue, but the trend is

not as regular as at the lower values of Re. There is not yet universal agreement on the reason for the irregular

behavior in the value of %CD at higher Reynolds numbers. However, the reason seems to be the inadequacy of any 2-D

turbulence model (in our case, LES) to capture the wake effects properly. This issue will be raised again when the results

of our calculations are presented. Not surprisingly, Tutar and Holdo have found that the 3-D results for the forced

oscillation of a cylinder provided better agreement with experimental data than were obtained for 2-D calculations.

Even so, the 2-D representation of VIV should be reasonably accurate because of the increased spanwise correlation of

the wake vortices when oscillation begins. Guilmineau and Queutey (2001) used a 2-D k � o RANS solution to

represent the flow past a cylinder with low mass-damping. The calculated results were compared to the experimental

results of Khalak and Williamson (1999) over the range of Re from 900 to 15 000. The results correctly predict the

maximum amplitude of oscillation, but the lower oscillation branch is not matched very well by Guilmineau and

Queutey.

We recognize that a 2-D calculation is not truly representative of a turbulent flow. In addition, we recognize that even

a 3-D turbulence model is inadequate to capture the full effects of the flow. Clearly, the 2-D approach is not going to

capture any 3-D effects in the wake which means that base pressure will be more negative in the 2-D approach than in 3-

D. But even beyond this shortcoming, a full 3-D LES model is incapable of modelling the transition that occurs in the

wake and in the shear layers and, especially, the boundary layer. (In saying this, we recognize that our Reynolds number

(Re=8000) certainly is not large enough for the boundary layer on the cylinder to be turbulent.) These processes are too

complicated and, perhaps, each is not well enough understood in its own right to be modelled properly, especially by a

single technique such as LES. Thus, an LES model, either 2-D or 3-D, is not capable of calculating the full flow past a

stationary cylinder, much less an oscillating one. This statement is not intended to be an indictment of the LES model

because the same statement is true for virtually any turbulence model. The only method capable of capturing all of the

aspects of turbulence is the method of DNS and present-day computers are not ready for the challenge of a high

Reynolds number calculation for the kinds of flows discussed herein.

However, a 2-D calculation does allow for a reasonably accurate estimate of global parameters such as the drag and

lift coefficients, especially when VIV begins because the wake correlation length increases significantly when VIV is

established. The negative aspect of doing a 2-D calculation is that the influence of the spanwise wake turbulence is

omitted. At Reynolds numbers in the laminar wake regime (ReE200), the 2-D calculation overpredicts the drag

coefficient up to 10%. At higher values of Re (such as Re=8000 or 13 000), overprediction still occurs, but the

overprediction trend is not quite as clear. When the cylinder is oscillating, the 2-D representation is more realistic than

when the cylinder is stationary. Transverse oscillation of the cylinder causes the correlation length of the wake vortices

to increase which diminishes the 3-D influence of vortex shedding. The authors are unaware of any study, which

examines the difference between 2-D and 3-D calculations for an oscillating cylinder. The lift coefficient is also

overpredicted in the 2-D representation, but an understanding of the amount of overprediction is not as well established

as that of the drag coefficient.

However, at Reynolds numbers with significant wake turbulence, the vortex-shedding behavior does show some

difference between the 2-D and 3-D calculations. The 2-D approach is not expected to provide a noticeable difference

from the actual 3-D results once vibration is established. The reason is that the physical fluid motion becomes

essentially 2-D, except for the wake turbulence, when VIV occurs; the vortices being shed have essentially a 2-D

structure because of an increased wake correlation length.

The approach that we will take in this study is a 2-D LES calculation of the flow past a circular cylinder for Re=8000

for a range of values of natural frequencies and damping ratios. The results to be presented are from a modified version

of the method of Zhang and Dalton (1996). The present analysis will focus on calculating the cylinder oscillation and

the influence of the natural frequency on the response. At resonance, the effect of both the mass of the cylinder and the

material damping on the oscillation will be examined. The approach we will take is to set a value of the cylinder natural

frequency and vary Re to determine the value of Re at which the maximum amplitude of oscillation will occur. Once

this Reynolds number has been established, the cylinder natural frequency fN is varied to examine the vibratory

response at a fixed (calculated) value of the vortex shedding frequency fso (for the stationary cylinder at the established

value of Re).
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2. Analysis

We will use the LES method to represent the wake turbulence at Re=8000. The approach taken to calculate the flow

field is the same as that of Zhang and Dalton (1996) with several notable differences to be described later. The finite-

difference scheme serves as a natural filtering operation with a filter width that is the local grid size. The filtered 2-D

governing equations are the Poisson equation for the stream function c;

r2c ¼ �o ð1Þ

and the vorticity transport equation,

qo
qt

þ u
qo
qr

þ
v

r

qo
qy

¼ ðnþ ntÞ
q2
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þ
1

r
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þ
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o; ð2Þ

where

u ¼
1

r

qc
qy

; W ¼ �
qc
qr

and o ¼
1

r

qðrvÞ
qr

�
1

r

qu

qy
: ð3Þ

In the equations above, r and y are the dimensional coordinates in the physical plane, t is the dimensional time,

n is the kinematic viscosity of the fluid, nt is the turbulent eddy viscosity, u and v are the radial and circum-

ferential velocity components, and o is the vorticity. All of the flow variables are the large-scale (resolvable)

quantities.

The effects of the turbulence are represented by the eddy viscosity nt, which is determined by a subgrid scale model. In

the present study, we use the Smagorinsky model,

nt ¼ ðCsDÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
; ð4Þ

where Cs is the Smagorinsky constant, D is the length scale (taken here to be the local mesh size), and Sij is the strain

rate tensor.

We have selected the cylinder radius, R; and the steady approach velocity, UN; as the length and velocity scales,
respectively, and the nondimensional time t is tUN=R: The nondimensional governing equations are

qo
qt

þ u
qo
qr

þ
v

r

qo
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¼
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þ

2
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� �
r2o ð5Þ

and

r2c ¼ �o; ð6Þ

where

r2 ¼
q2

qr2
þ
1

r

q
qr

þ
q2

qy2
ð7Þ

is the Laplacian operator. All of the terms in Eqs. (5)–(7) are now nondimensional. The Reynolds number and effective

eddy Reynolds number are, respectively, Re ¼ 2UNR=n and Ret ¼ 2UNR=nt: It is more convenient to solve this set of
governing equations in a rectangular grid than a polar grid. Thus, the coordinate system is transformed to a rectangular

system. The coordinate transformation, similar to the one used by Justesen (1991), is

r ¼ 0:6ex þ 0:4 and y ¼ pZ: ð8Þ

The physical and transformed planes are shown in Fig. 1.

We use the potential flow solution around a cylinder as the initial flow field. On the surface of the cylinder, the fluid

velocity is equal to the velocity of the cylinder, i.e.,

vt ¼ v � t and vn ¼ v � n; ð9Þ

where vt and vn are, respectively, the tangential and normal components of the velocity of the cylinder, v is the fluid

velocity vector, and t and n are, respectively, the unit tangent and normal vectors of the moving cylinder surface. In the

coordinate system that is fixed on the cylinder, we have

vt ¼ vn ¼ 0 ð10Þ

or

qc
qx

ð1; Z; tÞ ¼ 0 and cð1; Z; tÞ ¼ 0: ð11Þ
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For the absolute coordinate system, we have

vta0 and vna0: ð12Þ

Neither velocity can be prescribed in advance. The Dirichlet part of the boundary conditions at infinity is taken to be

cðxN; Z; tÞ ¼ rðxNÞ �
1

rðxNÞ

� �
UN sin pZþ

dY

dt
cos pZ

� �
and o ¼ 0; ð13Þ

where Y is the displacement of the cylinder (Y ¼ y=R) relative to the at-rest position, dY=dt is the transverse velocity of
the cylinder, and rðxNÞ is the radial distance to the outflow boundary. The nondimensional one-DOF equation for the

vibratory motion of the cylinder is

d2Y

dt2
þ 4pfNz

dY

dt
þ ð2pfN Þ

2Y ¼
1

m�p
CLðtÞ; ð14Þ

where z is the material damping ratio, fN is the natural frequency, m� is the ratio of the effective cylinder density to the
fluid density (mass factor), and CLðtÞ is the instantaneous lift coefficient. The value of the instantaneous lift coefficient is
determined from solving Eqs. (5) and (6) and then integrating the resulting pressure and shear stress distributions on the

cylinder at each time level. The value of CL at time t is used in advancing the cylinder displacement to the next time
level. Eq. (14) is used to advance the cylinder position to the time level tþ Dt using the known solution at time t: Once
the position is determined at the next time level, this new cylinder position and velocity are used as updated boundary

conditions for solution of the LES equations. These equations are solved again to determine the lift and drag

coefficients at the next time level. The process is repeated to determine cylinder positions and force descriptions at each

new time level. Using this technique provides up-to-date information regarding the cylinder position and velocity. Thus,
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Fig. 1. (a) The physical domain with a nonuniform mesh in the radial direction and a uniform mesh in the circumferential direction.

(b) Mesh system in the computational domain.
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the solution is advanced in time with the updated cylinder position and velocity providing the boundary conditions for

the next time level.

The solution of the vibratory equation in the Zhang and Dalton results was a first-order correct method while the

Newmark (1959) method used herein is essentially second-order correct. The earlier results of Zhang and Dalton

method yielded a vibratory response that did not compare satisfactorily to experimental data for self-excited vibrations.

As will be shown shortly, the present calculations give a more accurate comparison to experimental results.

3. Finite-difference representation

The governing equations and the initial and boundary conditions, Eqs. (5)–(13), are solved by a second-order

accurate finite-difference scheme. Standard central differences are applied to all of the spatial derivatives. Upwinding

differences are not used here because, in turbulent flows, the uncontrolled diffusion brought about by upwinding is

better represented by the controlled diffusion of LES with subgrid scale models. The latter is based on the physical

mechanism of turbulence and thus can better simulate the actual flows. The Poisson equation is solved efficiently by

using a vectorized FFT algorithm. The Newmark method (1959) is used for time advancement of the cylinder

oscillation from Eq. (14).

The differences between this study and that of Zhang and Dalton (1996) include a change in the outflow boundary

condition, the size of the computational domain, the addition of a Van Driest model for wall damping, and a higher

order extrapolation method to determine the wall vorticity. The new outflow boundary condition is a zero gradient

condition (Neumann condition) for vorticity in the streamwise direction at the outflow boundary. Even though this

condition is not quite correct physically, this method allows the outflow boundary to be transparent to the vortices

crossing the boundary. Another advantage of this boundary condition is that it let the outflow boundary distance be

decreased to five cylinder diameters as opposed to 25 as used by Zhang and Dalton. We chose the computational

domain to be an O-grid with a radius of five cylinder diameters. The results of this assumption will be discussed in the

following section. The computational grid should have a width of 10 diameters in the transverse direction to avoid

blockage; so this radial distance of five diameters is also what is required to prevent blockage effects. The advantage of

this size of computational domain is to have a finer grid system without an increase in the number of mesh points. This

approach allows the LES method to be more representative of turbulence, especially at the outflow boundary where the

physical grid size is large according to the transformation given by Eq. (8) (see O’Neil and Meneveau, 1997).

4. Results and discussion

Our approach to studying this VIV problem was to fix the natural frequency of the cylinder at fN ¼ 0:1 and run
through a series of calculations to find at what value of Re the maximum amplitude of cylinder oscillation occurred.

Once this Re value was determined, we then proceeded to vary the reduced velocity to determine how, at a fixed

Reynolds number, changes in the natural frequency affect the vibratory response of the cylinder. For all of the

calculations, the time step was 0.0025 and the grid size was 297� 256 (r � y) with the outer boundary five diameters
from the cylinder center.

The use of a computational grid with a five-diameter extent is somewhat less than that which is typically used for such

calculations. However, we feel that the use of the Neumann outflow boundary conditions (zero vorticity gradient)

allows the solution to develop correctly. In Fig. 2, we show a comparison of the results on the cylinder surface for two

different grids, one with a boundary distance of five diameters and one of eight diameters for a nonoscillating cylinder

at Re=13 000. The solution for the five-diameter domain is essentially the same as for the eight-diameter domain. The

number of grid points for the eight-diameter domain is approximately twice that for the five-diameter domain. In

addition, Fig. 3 shows the wake vortices for both domains; they are essentially identical to a distance of five diameters.

This comparison validates the use of the Neumann outflow boundary condition and shows that a more compact

domain can be used in the solution provided that the outflow boundary condition allows the flow to be represented

properly as it passes the outflow boundary.

The Smagorinsky value of this modelling constant is Cs ¼ 0:18: The value of Cs is actually not a constant, but is

noted to have some dependence on the Reynolds number. The value of Cs used herein is essentially an average value

and was determined from calculations at several different values of Re. We did not vary this value of Cs as the Reynolds

number changed. Obviously, slightly different values of this modelling constant will produce slightly different results.

However, determining precisely how the Cs value changes with Reynolds number would require calculations far more

extensive than could be accommodated within this study.
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Two different values of m� (from Eq. (14)) were used, m� ¼ 7:85 and 1.67. The larger value represents a solid
cylinder, which served as the main emphasis for this study, while the lower value represents a thin-walled water-filled

cylinder. Both were taken to oscillate in water. Primary results will be presented for two material damping cases: z ¼ 0:0
and 0.02. In addition, three other values of z will be examined at resonance to determine the effect of material damping
on the resonant behavior.

For purposes of validation, Fig. 4 shows the drag and lift coefficients plotted against time for a fixed circular cylinder

at Re=13 000. The time-averaged drag coefficient is about 1.28 (70.3) compared to the experimental value of 1.2, while

the lift coefficient had a range of 70.7 with an r.m.s. value of about 0.484. The experimental r.m.s. value of the lift

coefficient at Re=13 000 is about 0.43. The vortex-shedding frequency fso that we calculated was 0.111 (Strouhal

number of 0.222) whereas the experimental value is about 0.105 (Strouhal number of 0.21). The difference in CLr:m:s: is

significant (about 12%), but we attribute the difference between the calculated and experimental values of CLr:m:s: to the

fact that we are doing a 2-D calculation in a 3-D flow with perfect spanwise correlation of the shed vortices in the 2-D

model.

Table 1 shows a comparison between our calculated 2-D and 3-D drag and lift coefficients and Strouhal number,

some corresponding 3-D results from Lu et al. (1997) and those determined from experimental measurements for a fixed

cylinder. At each value of Re, the calculated 2-D values of %CD exceed the experimental values, as expected. This is

typical of a comparison of calculated 2-D drag coefficients and (3-D) experimental results. The %CD trend at lower values

of Re is known to be about 5 to 10% high. Our %CD result at Re=8000 is about 20% high. A reason for this was alluded

to earlier. We used a constant value of Cs which was determined over a range of Reynolds numbers, but which was also

the value at Re=13 000. We chose to keep Cs constant instead of treating it as a variable, i.e., a function of Reynolds

number. This approach will certainly lead to a numerical value for %CD that will have a nonconstant difference when

compared to the experimental value over a range of Reynolds numbers. Again, the reason for this is that the (time-

averaged) wake pressure is more negative for the 2-D representation because of the perfect spanwise correlation of

vortex shedding. At higher values of Re, the 2-D calculated value of %CD is still too high, but the trend is not as uniform

as at the lower values of Re. The 3-D results of Lu et al. (1997) show much better agreement with the experimental

values because a more accurate representation of the wake dynamics is included.

Sarpkaya (1978) and Zdravkovich (1990) both suggest that the mass and damping parameters be considered

independently in offshore applications. Khalak and Williamson (1999), however, have found a peak amplitude

correlation with the mass-damping parameter (m�z) but they also suggest that m� would be expected to influence the
peak response independently under certain conditions. Govardhan and Williamson (2000) examined the VIV problem

when the mass-damping parameter was relatively low, i.e., a value of 0.2 or less. The results of Feng (1968) were at m�z
values of slightly less than 1.0. As the value of m�z decreases, Govardhan and Williamson found that the value of Vr; at
which the maximum amplitude of oscillation occurs, increases.
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Fig. 2. Convergence comparison in the time-averaged wall vorticity between small and large domains for Re=13000.
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By varying the value of Re from 2000 to 15 500, we found that the value of Re at which the maximum amplitude of

oscillation (for fN ¼ 0:1) occurred was 8000. The VIV solutions, then, will be presented by taking the fixed cylinder

vortex-shedding frequency fso at Re=8000 and varying the natural frequency fN of the cylinder to form the frequency

ratio (fso=fN ). In a similar experimental investigation, the cylinder natural frequency would be fixed and the fluid

velocity (i.e., the Reynolds number) would be changed to vary the frequency ratio. Our approach in changing the

reduced velocity by varying the natural frequency eliminates any Reynolds number influence. However, we recognize

that this approach is not likely in an experimental investigation because velocity is easier to change than the natural

frequency.

Table 2 shows the maximum dimensionless displacement at several values of fso=fN at Re=8000 with m� ¼ 7:85 and
z ¼ 0:02: The trend is clear with the peak displacement occurring at fso=fN ¼ 1:233 and falling off to small values at the
extremes of the frequency ratio range 0:555pfso=fNp1:59: All of the displacement plots show a beating behavior, as
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Fig. 3. Vorticity contours for a uniform flow past a fixed circular cylinder at Re=13 000 with (a) 8-D-distance outflow boundary from

the center point and (b) 5-D-distance outflow boundary from the center point.
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Table 1

Comparison of 2-D calculated values with 3-D and experimental values

Re Calculated %CD (2-D) Calculated CLr:m:s: (2-D) Calculated St (2-D) Calculated
� %CD (3-D) Experimental %CD Experimental St

400 1.35 0.408 0.22 1.2 0.215

1000 1.3 0.386 0.233 1.0 0.21

3000 1.07 1.02

8000 1.44 0.49 0.222 1.15 0.205

13 000 1.28 0.484 0.222 1.2 0.205

20 000 1.15 1.2

44 200 1.18 1.2

From Lu et al. (1997).
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Fig. 4. CD and CL for a uniform flow past a fixed circular cylinder at Re=13000.

Table 2

Cylinder maximum displacement comparisons for m� ¼ 7:85 and z ¼ 0:02 at Re=8000

Vr Fixed 2.5 2.941 3.572 4.167 4.505 5.554 6.261 7.162

fso=fN 0.555 0.653 0.793 0.925 1.0 1.233 1.39 1.59

ðy=DÞmax — 0.0265 0.053 0.17 0.215 0.25 0.3 0.2 0.08
%CD 1.44 1.494 1.534 1.558 1.525 1.442 1.41 1.375 1.435

CD;osc 70.3 70.35 70.4 70.6 70.6 70.6 70.6 70.55 70.35

CLr:m:s: 0.49 0.558 0.66 0.805 0.786 0.593 0.335 0.365 0.35

CL;osc 70.7 70.8 71.0 71.6 71.6 71.5 70.6 70.7 70.6

H. Al-Jamal, C. Dalton / Journal of Fluids and Structures 19 (2004) 73–92 81



seen in Fig. 5 for fso=fN ¼ 0:793; except at the extremes of the frequency range. This beating phenomenon was observed
by Feng (1968) in air and by Sarpkaya (1978) and Khalak and Williamson (1999), both in water. As will be shown later,

the presence of beating is controlled by the value of z; the material damping ratio, used in the calculation. This comment
is somewhat verified, as shown in Fig. 5, where results for values of z ¼ 0:0 and 0.02 are shown with the larger

amplitude occurring for the case with no material damping. Fig. 6 shows the clear lock-on region for the case of

m� ¼ 7:85: We notice how this region is getting wider as the damping ratio decreases. From Table 2, we also notice a

significant increase in the values of CLr:m:s: at the beginning of the lock-on and a decrease as perfect synchronization is

being approached. Sarpkaya (1978) has addressed this trend in CL behavior. In addition, the drag fluctuations are

increasing with oscillations. Figs. 7 and 8 show the profiles of the calculated drag and lift coefficients at fso=fN ¼ 0:925
and 1.233. From the values shown in Table 2, the effect of the frequency ratio on the extent of cylinder oscillation (i.e.,

VIV) is quite evident. The peak oscillation occurs at fso=fN ¼ 1:233 which corresponds to a reduced velocity

(Vr ¼ UN=fND) value of about 5.5.

The effect of changing values of z is presented by results shown in Fig. 9. Response of the oscillation to increasing
values of material damping at m� ¼ 7:85 is quite evident from the values in Fig. 9. Increasing z from 0.0 to 0.1 produced

a 64% decrease in maximum amplitude of oscillation while an increase in z from 0.02 to 0.1 produced a decrease of

about 56%. This peak amplitude continues to decrease as z increases, accompanied by a decrease in the beating

behavior. Also, the period of the imposed higher harmonics becomes greater with increased damping because damping
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Fig. 5. Effect of z on the beating phenomenon of a vibrating solid circular cylinder with fN ¼ 0:14 at Re=8000. (a) z ¼ 0:00; (b)
z ¼ 0:02:
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tends to diminish the low frequency effects. Fig. 10 shows the cylinder oscillation at z ¼ 0:1 (and m� ¼ 7:85); note the
significant decrease in beating, especially in contrast to Fig. 5 for z ¼ 0:02: The beating becomes less pronounced as the
value of z is increased, but the contrast is shown only for z ¼ 0:02 and 0.1 (compare Figs. 5 and 10).
Listed in Table 3 are the results from the VIV calculations for m� ¼ 1:67: The effect of decreasing the value of m� is

to increase the magnitude of the forcing function on the right-hand side of Eq. (14). This increase drives the oscillation

to higher amplitudes. Fig. 11 shows the maximum peak variation with Vr: From the behavior of the lock-on region, it is

not clear that this simulation is capable of detecting the three branches of the lock-in region (initial, upper and lower

branches) as addressed in Govardhan and Williamson (2000). There is a discrepancy in what seems to be our lower

branch in that it does not have a constant-value behavior. The reason behind this discrepancy is likely related to the

manner in which we vary Vr (i.e., by changing fN ) which becomes unrepresentative for Vr > 13:0: Fig. 12 shows that the
cylinder oscillation frequency (fc) is very low for Vr > 13:0: This can be explained by the cylinder having a diminishing
stiffness as Vr increases, with the stiffness becoming quite small for values of Vr > 13:0: Another discrepancy is that the
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ratio of fc=fN ; during lock-in, is slightly less than one which can be interpreted by the forcing function used by

Govardhan and Williamson (2000) being a regular sinusoidal function and the fluid damping is considered to have a

constant value. In our study, the forcing function is irregular and the fluid damping is implicitly calculated in the fluid

forces which makes it vary with time.

In Fig. 13, the near wake behavior is shown for different times in one and one-half oscillatory cycles at fso=fN ¼ 1:233;
z ¼ 0:02; and m� ¼ 7:85: These results clearly show the near wake response to the oscillation. As the cylinder moves
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Fig. 10. Effect of high material damping ratio (z ¼ 0:1) on the beating phenomenon of a vibrating solid circular cylinder with

fN ¼ 0:14 at Re=8000.

Table 3

Cylinder maximum displacement comparisons for m� ¼ 1:67 and z ¼ 0:02 at Re=8000

Vr 2.5 3.572 5.554 7.162 10 13.153 16.67 20 22.75

fso=fN 0.555 0.793 1.233 1.59 2.22 2.92 3.7 4.44 5.05

ðy=DÞmax 0.21 0.418 0.784 0.824 0.873 0.64 0.87 0.71 0.66
%CD 1.6767 1.4774 1.938 1.3913 1.3709 1.3488 1.3215 1.3576 1.384

CLr:m:s: 1.0143 0.9453 0.939 0.4083 0.2345 0.2054 0.2038 0.1883 0.2048
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upward in the vibratory cycle, the near wake is expected to be deflected down from the center-line, with the converse

being true for the cylinder moving down in the cycle. This aspect of the near wake behavior is evident in the calculated

results.

The wake response results we have found do not fit in the 2S, 2P, etc. mode descriptions of Williamson and

coworkers. There are several reasons why this disagreement might exist. The maximum Re value of Govardhan and
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Williamson (2000) was 3700 while ours is 8000. In Govardhan and Williamson, they state (p. 91) that, at higher Re

(D5000), the flow visualization technique is ‘‘somewhat unclear’’. This can only mean that the existence of modes such

as 2S and 2P is not yet established beyond Re=3700. Not that our Reynolds number is sufficiently high (Re=8000),

but it certainly is larger than that of Govardhan and Williamson (Re=3700). Zdravkovich (1997), in his book on flow

past a cylinder, summarizes the early work of Gerrard and Bloor regarding the wake of a cylinder and the development

of wake turbulence. The wake turbulence begins at about Re=200 with the shear layers remaining viscosity dominated.

The shear layers begin to develop instabilities at ReB1300. By ReB11 000–13 000, the shear layers have become fully

turbulent. In fact, this is what accounts for the jump in the steady flow drag coefficient at ReB11 000–13 000. The

transition point on each shear layer has moved forward to the separation point which causes a slight increase in pressure

drag. At these lower values of Re (3700 and even 8000), the physical shear layers are transitional and the wake structure

is still developing. The LES method, at the present time, does not seem to have the capability to examine this

transitional nature of turbulence generation in the shear layer. Thus, it seems that there is an obvious Reynolds number

effect that is present in the formation of the wake vortices. This statement is supported by the PIV studies of Lin et al.

(1995) who compare near wake PIV images at Re=1000, 5000, and 10 000 and the flow visualization studies of Dalton

et al. (2001) who compare flow visualization results at Re=1000 and 3000, among others. There are obvious Reynolds

number effects that are shown in the results of these two studies. This wake-transition situation is even more

pronounced for the VIV case because of the time-dependence in the shear layers. We support the position of Govardhan

and Williamson that the vortex modes are unclear at higher Reynolds numbers. Our results do not show the 2S, 2P, etc.,

type of modes at Re=8000. We suspect that these modes are descriptive of the flow at lower values of Re and for

sinusoidal oscillations. At values of Re as high as 8000, we suggest that these modes that are so descriptive of the VIV

wakes at much lower values of Re are no longer present (perhaps in a recognizable form) and the wake structure has

more of a similarity to that of the nonoscillating cylinder. Govardhan and Williamson continue to discuss this wake-

mode behavior in p. 108. They note that several CFD investigators have not found the 2P mode to be present where it is

expected based on the earlier work of Williamson and Roshko (1988). In Blackburn et al. (2001), it is speculated that 2-

D low Reynolds number simulations are not sufficient to capture the 2P modes that are attributable to 3-D effects. Our

calculations are also 2-D, but we feel that there are other reasons for the lack of agreement with the standard mode

observations. Govardhan and Williamson note that their results indicate that ‘‘the apparent disparity between the high

Reynolds number experiments (ReB2000–4000) and the simulations seems to be a Reynolds number effect’’. We fully

support these statements and further suggest that, based on our CFD results, albeit 2-D, the wake structure has a

continuing dependence on the Reynolds number. A clear understanding of the dependence remains to be found and is

just a small part about what remains to be discovered about VIV.

Another comment on the 2S, 2P, etc. mode description is that the existence of these structures and their relation to

cylinder oscillation was established for sinusoidal oscillations. When the oscillation is not purely sinusoidal (as in the

results herein and also in those of Blackburn et al.), the 2S, 2P, etc. structures may not become fully established because

the amplitude of oscillation and the phase angle are both time dependent. The lack of a constant amplitude suggests

that the vortex structures do not have the same size or extent that they would have for a constant amplitude oscillation.

The lack of constancy in amplitude and phase angle could quite likely lead to the lack of repeatability in vortex

formation which certainly could suppress the standard mode patterns. This issue also needs further study.

In addition to the nonconstant amplitude contributing to the expected lack of agreement with the 2S, 2P, etc.

structures, we also note that another source of conflict is present. Our calculations are done at a constant Reynolds

number; we changed the reduced velocity by changing the natural frequency, not the velocity itself. The traditional 2S,

2P behaviors were observed for a given natural frequency and the reduced velocity was increased by increasing the

velocity. This increase in velocity imposed a Reynolds number effect on these earlier results which is absent in our case.

In both the forced oscillation and the self-excited cases studied by Williamson and coworkers, a constant phase angle

between the displacement and the force was typically assumed and found. We do not agree that a direct comparison can

be made between the forced oscillation and self-excited oscillation cases, especially when the self-excited case is not

sinusoidal. Our calculations produced a nonsinusoidal response and did not yield a constant phase angle. In fact, the

numerical study of Blackburn et al. (2001) also did not yield a constant phase angle. The numerical simulation of

Blackburn et al., similar to ours, seems to produce a nonsinusoidal oscillation. Their simulation also does not assume

that a constant phase angle exists and does not yield one.

The wake vorticity plots in Fig. 13 depict a typical wake structure for a self-excited oscillation. This illustration

represents about one and one-half oscillations. Recall that the cylinder motion is oscillatory, but not sinusoidal. At

t ¼ 140; the flow/oscillation combination has produced a pair of relatively symmetric vortices in the near wake. The
implication of this pattern is that no vortices are being shed for a relatively short time which means that the vortices that

were shed at a slightly earlier time have passed out of the computational grid. As time progresses, the wake again
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Fig. 13. Physical vorticity contours of a vibrating solid circular cylinder over one and one-half cycles with fN ¼ 0:09 and z ¼ 0:02 at
Re=8000.
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Fig. 13 (continued).
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Fig. 13 (continued).
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becomes asymmetric and, at t ¼ 147; shedding has again become established. This representation is carried through
t ¼ 161 during which interval the process of periodic shedding for the oscillating cylinder has become re-established.

The vorticity plots for the oscillating cylinder (Fig. 13) contain some noise that is a function of the range of vorticity

values selected for the plot. By tightening this range of values, a much smoother appearing wake structure can be

represented. We suggest that part of this noise problem is that this calculation is at Re=8000. There are very few

calculations that show the vorticity plots at a Reynolds number this high. We are aware of only one PIV study at values

of Re as high as those in this study or in several other computational studies (see Lin et al., 1995). In the study by Tutar

and Holdo (2000), fairly smooth vorticity contours were obtained at Re=2.4� 104. Tutar and Holdo used an outflow
boundary distance of 15-D, but used about one-half the number of mesh points than we used for the calculation

involving a 5-D distance. Based on the calculations we have performed in this and earlier studies, it is not clear that the

grid resolution employed by Tutar and Holdo is sufficient to describe this problem adequately.

Fig. 14 shows the results of our calculations plotted on Griffin’s ‘‘universal’’ amplitude vs. mass-damping curve. This

plot is from Skop and Balasubramanian (1997) and includes the Skop–Balasubramanian correlation as well as data

collected by Griffin and others. Our results at m� ¼ 1:67 agree reasonably well with the data in the Griffin plot, but are
a bit below the Skop–Balasubramanian correlation. At m� ¼ 7:85; our results fall about 40% below the correlation and

about 10% below the data.

5. Conclusions

Two-dimensional calculations of the self-excited response of a circular cylinder to a uniform flow are shown to be a

reasonably accurate representation of the VIV problem. In spite of the shortcomings of a 2-D representation, the results

show the expected vibratory response of the cylinder for 0:555ofso=fNo1:59: Calculations were done for two values of
the mass factor m� (m� ¼ 1:67; 7.85), and several values of z (0:0pzp0:1). Calculations at values of the mass-damping
factor of 0.0333 and 0.157 were done in detail. The cylinder was shown to follow the expected VIV response at

m�z ¼ 0:157 with lock-on shown to be present in a vivid and expected manner, peaking at a reduced velocity of about
5.5. At m�z ¼ 0:0333; the results of the calculations are consistent with experimental values which show a broadband of
VIV responses at this value of the mass-damping factor. The phenomenon of beating was examined and was found to

be reduced significantly by an increase to a value of 0.1 for the material-damping ratio. We did not observe the standard

modes of vortex shedding which have been observed by several investigators, primarily for the forced-oscillation

problem. There are at least three possible explanations for this discrepancy: The first is that this was a calculation at a

value of Re large enough not to have been examined in regard to the existence of these standard modes that have been

established for lower values of Re. The second, and probably more likely, is that the oscillation calculated herein is not

sinusoidal which would interfere with the timing and length of the vortex structures and influence the overall wake
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Fig. 14. Griffin ‘‘universal’’ plot showing where our calculations, indicated by’, compared to the Skop–Balasubramanian correlation

and the data compiled by Griffin. The figure is from Skop and Balasubramanian (1997).
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structure in that manner. A third, and equally probable reason, is that our results are at a constant Reynolds number

whereas the experimental results for which these standard patterns of vortex structures were observed are not at

constant Reynolds number.
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